Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos.
نویسندگان
چکیده
An extracellular signaling molecule acts on several types of cells, evoking characteristic and different responses depending on intrinsic factors in the signal-receiving cells. In ascidian embryos, notochord and mesenchyme are induced in the anterior and posterior margins, respectively, of the vegetal hemisphere by the same FGF signal emanating from endoderm precursors. The difference in the responsiveness depends on the inheritance of the posterior-vegetal egg cytoplasm. We show that macho-1, first identified as a localized muscle determinant, is also required for mesenchyme induction, and that it plays a role in making the cell response differ between notochord and mesenchyme induction. A zygotic event involving snail expression downstream of maternal macho-1 mediates the suppression of notochord induction in mesenchyme precursors.
منابع مشابه
Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors.
Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. H...
متن کاملThe transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos.
In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead ...
متن کاملExpression of Hr-Erf Gene during Ascidian Embryogenesis
FGF9/16/20 signaling pathway specify the developmental fates of notochord, mesenchyme, and neural cells in ascidian embryos. Although a conserved Ras/MEK/Erk/Ets pathway is known to be involved in this signaling, the detailed mechanisms of regulation of FGF signaling pathway have remained largely elusive. In this study, we have isolated Hr-Erf, an ascidian orthologue of vertebrate Erf, to eluci...
متن کاملEffects of U0126 and fibroblast growth factor on gene expression profile in Ciona intestinalis embryos as revealed by microarray analysis.
Fibroblast growth factor (FGF) induces the notochord and mesenchyme in ascidian embryos, via extracellular signal-regulated kinase (ERK) that belongs to the mitogen-activated protein kinase (MAPK) family. A cDNA microarray analysis was carried out to identify genes affected by an inhibitor of MAPK/ERK kinase (MEK), U0126, in embryos of the ascidian Ciona intestinalis. Data obtained from the mic...
متن کاملAn essential role of a FoxD gene in notochord induction in Ciona embryos.
A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of beta-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of beta-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 21 شماره
صفحات -
تاریخ انتشار 2003